Monday, May 30, 2011

How to Flirt With a Pretty Girl


  1. Be yourself. Do not attempt extreme images such as macho, super-smooth, cool dude, comedian, or a pick-up artist. Even if it does impress her momentarily, the truth will surface eventually, and you will likely lose her trust and her interest. It is much better to be honestfrom the beginning.

    2
  2. Start a conversation with her. Most girls want guys to make the first move, so speak with confidence and flow, demonstrating that you are secure with yourself. You can pretend the confidence at first, and it will come more naturally when she responds to you.
  3. 3
    Listen more than you talk. This doesn't mean sit there like a dud, but ask a question, wait until she is completely done talking, then make a comment that shows you were listening. Avoid interrupting her, because no one appreciates this, and doing so will kill your chances at making a good impression. Also, don't argue unless the issue is very important to you.
  4. 4
    Be bold but also courteous. If you can't think of anything else to say, look her in the eyes and compliment her. Don't be afraid to speak up, or you will never get anywhere!
    • If she has a scarf on that you think is nice, tell her, and touch her scarf for a few seconds, and ask when and where she got it. Don't forget to tell her it suits her. Use an undertone—girls love it when you lean towards them and murmur a compliment. Be careful with compliments on clothes: don't use too many or she may perceive you as a homosexual.
    • Don't overwhelm her with compliments. You should focus on going from "nice acquaintance" to "intimate friend/potential lover" smoothly. Intimate friends joke around, tease each other gently, touch each other. Start with touching her on the arm when you're laughing (don't watch the hand). See if she touches you.
  5. 5
    Find out her interests and the music she likes. Then talk to her about them. If you can't think of anything to talk about, use a conversation starter like "How has your day been?" or "Don't you love this time of year?". These most usually work only if you are already friends with her, and you see her on a daily basis. If you do see her on a daily basis and she mentions, for example, a vacation she is going on soon, inquire where she is going, and branch off from there; when she gets back ask her how it was. Don't be extremely serious in your inquiry; just ask it casually.
  6. 6
    Be funny. Most girls agree that a good sense of humor is attractive. Humor can also relieve awkwardness. If you say something weird, follow it up with something funny and turn it into a joke. Alternatively, just learn to be witty. Almost all girls like intelligence as well as confidence, and blending those with humor can be a very effective combination.
    • Teasing a girl can be a good way to make her laugh and keep things interesting. Just don't joke about something that may be a sensitive issue, such as her weight. If she strongly cares about saving the trees, for example, and you rip up paper in an attempt to get laughs, she'll just end up hating your guts.
    • Find something that you both think is hilarious. Turn it into an inside joke, so when you want to talk to her, you have something to say no matter what, and she thinks that something is funny. However, don't use it too much, or it loses its humor and her opinion of your humor is lowered.
  7. 7
    Don't be too eager to start conversing with her at every possible opportunity. When she walks into the room, you do not have to jump up and say "Hi!!" immediately, but if she sits next to you and initiates conversation, go for it!
    • Girls will be touched if you make the first move. Stare at her for maybe 2 seconds and, when she looks at you, look embarrassed. She'll probably laugh and remember you--for a good reason!
  8. 8
    Don't be fake--it turns a girl off. If you are trying to be more macho then you are or smarter or more confident then you really are, you look desperate and that seriously upset her.

Top Ten Assault Rifles


Top Ten Assault Rifles

An assault rifle is a rifle used for combat where exchange of fire takes place over short distances (i.e. <300m) and is capable of selective fire, which is the ability to switch from single fire to semi automatic or automatic fire.
An assault rifle has the following characteristics:-
a)      It must have a buttstock for firing from the shoulder
b)      Must be capable of selective fire
c)      Must use a cartridge stronger than that of a pistol but less than one of a battle rifle.
d)      Must have a detachable magazine
1. AK-47 series of rifles
This is without question the most widely used and popular assault rifle in the world.  The AK-47 was developed by Mikhail Kalashnikov for the Soviet Army for the Soviet armed forces. It has a kickback gas action for ejecting thecartridge. The standard AK 47 fire a 7.62×39 mm cartridge has a muzzlevelocity of 2300 ft\sec and a range of 1300 ft.
FN—SCAR2. FN—SCAR
The SOF Combat Assault Rifle or SCAR-L of US and Belgium parentage was made primarily for the US Special Forces and fires a 5.56x45mm NATOcartridge. It has a rate of fire between 600-650 rounds per minute and an effective range of 500-600—meters.
Steyr-AUG3. Steyr AUG
The Steyr AUG is designed by Steyr Mannlicher GmbH & Co KG of Austria. The rifle features a two stage trigger and is fed from double column box magazines with a 30 round capacity It fires a 5.56x 45mm NATO cartridge, has a rate of fire of 680-850 rounds per minute, an effective range of 300m and is fed by a 30 or 42 round box magazine.
M-164. M-16
The M-16 is the standard rifle for the US armed forces.  The M-16 is a 5.56 calibers lightweight, air cooled, magazine fed, gas operated rifle with a rotating bolt driven by a direct impingement gas operation. The M-16 is effective within a range of 550m and a rate of fire of 700-950 rounds a minute.
M-45. M-4
The M-4 5.56mm assault is of US origin, it is produced by Colt Defense. It fires a 5.56x45mm NATO cartridge, has a gas operated rotating bolt action and has a rate of fire of 700-950 rounds per minute. It has an effective range of 300m.
Heckler-&-Koch-HK-4166. Heckler & Koch HK-416
The HK 416 is an assault rifle manufactured by Heckler & Koch. It is of mixed German and American parentage.  It is the standard weapon for the American Delta Force. It has a rate of fire of 850 rounds per minute and fires a 5.56 x 45 NATO cartridge.
Barret-REC77. Barret REC7
The REC7 is of American origin and is manufactured by the Barret Firearms Company. The REC7 uses the new 6.8mm Remington RPC cartridge. It has a gas operated rotating bolt action and has a muzzle velocity of 2650 ft persecond. It has an effective range of 600m and a cyclic fire rate of 750 roundsper minute.
FAMAS8. FAMAS
The FAMAS  is manufactured I n France by the MAS located in Saint Etienne  It was designed by Paul Tellie  It has an effective range of 300m and a rate of fire of 1000 rounds per minute.
L85A29. L85A2
This assault rifle is in the British Army frontline service… It is an Enfield rifle and.  Has a magazine capacity of 30 rounds, fires 650 rounds a minute and has an effective range 0f 500ms.
G3610. G36
The G36 is of German origin and is manufactured by Heckler &Koch  It fires a 5.56x45mm NATO cartridge, has got a gas operated rotating bolt action fires 750 rounds per minute and has an effective range of 600m

top 10 fighter jets of decade


10- J-10

Image Hosted by ImageShack.us

The J-10 adopts a “tailless delta-canard” aerodynamic layout, which was originally developed for the cancelled J-9 fighter. The aircraft has the horizontal control surfaces moved forward to become a canard in front of the wing. When the aircraft pitches up, instead of forcing the tail down decreasing overall lift, the canard lifts the nose, increasing the overall lift. Because the canard is picking up the fresh air stream instead of the wake behind the main wing, the aircraft can achieve better control authority with a smaller-size control surface, thus resulting in less drag and less weight.

The aircraft employs an adjustable, chin-mounted air intake that supplies air to the single Lyulka-Saturn AL-31FN afterburning turbofan jet engine. The upper portion of the air intake is incorporated with an intake ramp designed to generate a rearward leaning oblique shock wave to aid the inlet compression process. The ramp sits at an acute angle to deflect the intake air stream from the longitudinal direction. This design created a gap between the air intake and the forward fuselage, and requires six small beams to enhance the structure for high-speed flight. This air intake design was reportedly replaced by a diffuser supersonic inlet (DSI) on the latest J-10B variant.

The tailless delta-canard configuration is inherently aerodynamically unstable, which provides a high level of agility, particularly at supersonic speeds. However, this requires a sophisticated computerised control system, or “fly-by-wire” (FBW), to provide artificial stabilisation and gust elevation to give good control characteristics throughout the flight envelope. The J-10 uses a digital quadruplex (four-channel FBW system developed by the 611 Institute. The software for the FBW system was developed by the 611 Institute using ADA language.

The pilot sits in the cockpit located above the air intake and in front of the canard. The two-piece bubble canopy gives the pilot great vision at all directions, a vital feature during air-to-air combat. The onboard digital flight control computer ‘flies’ the aircraft for the pilot, providing automatic flight coordination and keeping the aircraft from entering potentially dangerous situations such as unintentional slops or skids. This therefore frees the pilot to concentrate on his intended tasks during the combat.

The two-seater J-10S fighter-trainer is identical to the single-seater variant in performance and avionic configuration, but has its forward fuselage stretched to accommodate a second pilot seat. Two pilots sit in tandem in the two-seat cockpit with one single large bubble canopy. An enlarged dorsal spine accommodates additional avionic for the second pilot. The aircraft can be used for pilot training or as a standard fighter.
Crew: One (J-10); Two (J-10S)
Powerplant: 1X Russian Salyut AL-31FN turbofan
Thrust (dry): 76.2kN (7,770kg, 17,130 lb)
Thrust (afterburning): 122.55kN (12,500kg, 27,557 lb)
In-flight refuelling: Yes
Weapon: 23mm single-barrel cannon
External Hardpoints: 11 (five under the fuselage centerline; six under the wings)

"J-10 is still to have see lot of action and its fighter plane from china so its hard to say about the future prospect of this plane right now."

9- Mig-35


Based on the MiG-29M OTV, MiG-35 (Nato reporting name Fulcrum F), is equipped with advanced avionic suite comprising of a modern glass cockpit designed with three 6x8 inch flat-panel LCDs and full HOTAS controls, digital map, helmet-mounted sight. The latest Zhuk-AE active electronically scanning array (AESA) radar is mounted on this aircraft. This radar was developed with modular approach, enabling upgrading existing Zhuk ME/MSE radars, into the phased array equipped MFE/MSFE standard, deployed in MiG-29/Su-27 platforms.

MiG-35 uses an integral aerial refuelling probe, which is required as 'must have' for the Indian MRCA program.The MiG-35 is fitted with western standard Mil-1553 bus and advanced Russian made weaponry. Reliability and serviceability have been improved, reducing operating cost and improving serviceability by 2.5 times (compared to older MiG-29s). MiG-35 is The MiG-35 has a 'glass cockpit' based on Russian avionics or western systems (mostly French).equipped with an optronic target tracker, identical to the system used on the Su-30MKI. For precision air-to-ground attack missions, the aircraft can be equipped with a conformal electro-optical targeting module, installed under the right air intake. The aircraft is equipped with radar warning, electro-optical missile launch warning and laser warning sensors, and integral active self protection (jamming, chaff and flare) as part of the integral self-defense system. The aircraft has four additional hardpoints and can haul an external payload in excess of six tons.

Phazotron Zhuk AE AESA radar is installed in the production version of MiG-35Most of the systems introduced in the MiG-35 can be applied to older MiG-29s through upgrading programs.

The aircraft is powered by two RD-33 MK engines digitally controlled smokeless engines, producing 9000kgf of thrust each. This type is an improved and uprated version of the standard RD33 engine. The engine was developed to power the carrier based MiG-29K and modernized version MiG-29M/M2. The prototype demonstrated in Bangalore did not have thrust vector exhausts, but, according to the manufacturer, these can be installed in production aircraft.

"MIG 35 another plane in the series of MIG lineup and because of there reputation they have worked hard and made changes according to western standards but still have to play action role in the coming future."
8- Typhoon


The cockpit (available in single- or twin-seat configurations) is situated forward in the fuselage design, aft of the radar-housing nose cone assembly. The pilot(s) sit (s) under a two-piece canopy offering up excellent views from within the cockpit. The canopy consists of the forward fixed windscreen and the main component which, itself, is hinged at the rear. The contoured fuselage sports small side-mounted strakes near the cockpit and all-moving canard foreplanes. The strakes serve to move stagnant air generated by the canard foreplanes. As the Typhoon is an inherently unstable platform (her center of gravity is located aft of center itself), the canards play a crucial role in various aerodynamic aspects of the aircrafts flight envelope including pitch control. Canard foreplanes allow for improved turning and can improved total drag/lift during landing and take-off while providing greater agility at speed. Their forward position in the design also allows them to be of reduced drag as opposed to rear-mounted tail planes found in traditional fighter designs.

The main wing assemblies are of a delta wing design featuring extensive sweep along the leading edge and little to no sweep along the straight trailing edge. Construction includes carbon-fiber composite rib and spars with metal only used along the weapon hardpoints. Up to 70% of the Typhoon's construction revolves around use of carbon-fiber composites, titanium and aluminum-lithium. Control surfaces are fitted to both the leading and trailing edges. Control is aided by trailing edge flaperons which accomplish the combined tasks of conventional flaps, elevators and ailerons and are further aided by the canard foreplanes. An airbrake is fitted to the ventral side while leading-edge flaps help in landing. The delta wing design approach also allows for multiple external underwing and underfuselage hardpoints and number thirteen in the Typhoon. Jammer pods are ingeniously contained at the clipped wingtips so no ordnance is used at those areas. The Typhoon makes use of basic stealth design features including implementation of a small radar cross section. Some areas of the aircraft are coated over in special materials to absorb incoming radar waves. The radar system itself diffuses its own signals to an extent.

Intakes are mounted directly beneath the fuselage and are split at their center, allowing each duct to aspirate their respective engine and further break up incoming radar signals from reaching the engine. Each intake opening is rectangular in shape and slightly angled down towards the fuselage centerline. The intake sports a hinged lower "lip" and the center splitter plate ensures proper, uninterrupted airflow to each engine. Its low fuselage placement is also deemed optimal for this particular aircraft design layout. The empennage is dominated by a single, large-area vertical tail fin (similar to the one as found on the Panavia Tornado but of a smaller overall size) mounted between the two engine compartments. The engines exhaust through conventional nozzle rings at the rear and base of the vertical tail fin though there has always been talk of replacing these with vectoring nozzles in the future. There is a small noticeable intake at the trailing edge base of the fin. As a delta wing design, the Typhoon makes no use of traditional horizontal tail planes and instead uses the canard foreplanes and wing-mounted surfaces for basic flight functions (aided by computers).

Her undercarriage is conventional, sporting two single-wheeled main landing gear legs and a single-wheeled nose landing gear leg. The main legs retract inwards towards centerline under each wingroot while the nose leg retracts backwards under the split intake system. Each leg is fitted with carbon-carbon brakes that are cooled by a fan system and furthermore controlled by an automated computer function. The undercarriage as a whole is designed to withstand a good deal of stress, allowing them to stay exposed at constant Angle-of-Attack (AOA) during landings. This affords the Typhoon a relatively short landing run of just 2,300 feet.

"Eurofighter have western avionics with smart bombs and weapon system aboard but still need to see the action in war but lacks the vector thrust like Russians have so hard to say in close counter fights."
7 - Gripen NG



The JAS 39 Gripen is a fourth-generation fighter manufactured by Swedish company Saab. Designed as a swing-role type capable of performing multiple missions, the Gripen entered service with the Swedish air force in 1995, replacing its Saab Drakens and Viggens.

Powered by a single Volvo Aero RM12 afterburning turbofan based on the General Electric F404, the Gripen is capable of speeds of up to Mach 2 and has a maximum range of 2,800km (1,510nm).

Weapon options include a 27mm Mauser internal cannon, Raytheon AIM-9 Sidewinder and AIM-120 AMRAAM air-to-air missiles and Raytheon Paveway II laser-guided bombs. The aircraft is also being used to support the development of MBDA's Meteor beyond visual-range air-to-air missile.

To date 236 Gripens have been ordered, with the Swedish air force to receive the vast majority, at 204 aircraft. Export customers are the Czech Republic (14), Hungary (14), South Africa (26) and Thailand (12), with some of their aircraft being remanufactured Swedish JAS 39s. The UK’s Empire Test Pilots' School also uses the Gripen for undergraduate training under an arrangement with Saab.

Next Generation

An upgraded, two-seat variant dubbed the Gripen Demo first flew in April 2008, with this to de-risk technologies for a planned Gripen NG (Next Generation) production aircraft. The demonstrator is powered by a GE F414G which will enable the type to sustain a supercruise performance of M1.1 without using its afterburner.

Compared to the D-model aircraft, the Gripen Demo has an increased maximum take-off weight of 16,000kg (35,200lb), 40% more internal fuel capacity and offers a range of up to 4,070km.
Crew: 1 (2 for JAS 39B/D)
Powerplant: 1× Volvo Aero RM12 afterburning turbofan
# 1 × 27 mm Mauser BK-27 cannon 120 rounds
# 6 × Rb.74 (AIM-9) or Rb 98 (IRIS-T)
# 1 × 27 mm Mauser BK-27 cannon 120 rounds
# 4 × Rb.99 (AIM-120) or MICA
# 4 x Rb.71 (Skyflash) or Meteor
# 4 x Rb.75
# 2 x KEPD.350
# 4 x GBU-12 Paveway II laser-guided bomb
# 4 x rocket pods 13.5 cm rockets
# 2 x Rbs.15F anti-ship missile
# 2 x Bk.90 cluster bomb
# 8 x Mark 82 bombs
# 1 x ALQ-TLS ECM pod

"Recent reports have came up that new Gripen NG will have lots of new upgrades far better than its counterparts and along with this it is participating in MMRCA , undergoing trail runs in India , one of the factor to decided to find out best."

6- Rafale
Image Hosted by ImageShack.us

Rafale is a twin-jet combat aircraft capable of carrying out a wide range of short and long-range missions, including ground and sea attack, air defence and air superiority, reconnaissance, and high-accuracy strike or nuclear strike deterrence.

The aircraft has been developed for the French Air Force and Navy. 61 aircraft were ordered (36 for the air force and 25 for the navy).

The Rafale M entered service in 2001, and ten aircraft are operational on the Charles de Gaulle aircraft carrier.

Rafale B and C entered service with the French Air Force in June 2006, when the first squadron was established. The second air force squadron was set up in 2008.

Navy Rafale F1 standard fighters have air-to-air capability. Deliveries to the navy of the F2 standard, with air-to-ground missiles, began in May 2006 and 17 were delivered in May 2008. F1 aircraft are to be upgraded.

A €3.1bn ($3.89bn) contract to develop the fully capable F3 standard aircraft was awarded to Dassault Aviation (€1.5bn), Snecma (€600mn), Thales (€500mn) and other French defence contractors by French Ministry of Defence in February 2004. An order for 59 F3 aircraft, 47 for the air force (11 two-seat and 36 single-seat) and 12 (single-seat) for the navy, was placed in December 2004. The Rafale F3 was certified in July 2008 and will be delivered from 2009. The first squadron of 20 aircraft will be in service by the end of 2009. The contract also includes the upgrade of Rafale F2 aircraft.

As of July 2008, 120 Rafales have been ordered (82 for the French Air Force and 38 for French Navy), with 35 delivered to the air force and 23 to the navy.

In March 2007, three French Air Force and three Navy Rafale fighters began deployment in Tajikistan in support of the Nato International Security Assistance Force (ISAF) in Afghanistan.

" Rafale is semi stealth fighter plane with twin engine to support high speed performance including french avionics which makes it better to place at this position ".

5- F-18


, night, combined fighter and attack aircraft and can be refueled in flight. The F/A-18 multi-mission aircraft can operate from either aircraft carriers or land bases. The F/A-18 fills a variety of roles: air superiority, fighter escort, suppression of enemy air defenses, reconnaissance, forward air control, close and deep air support, and day and night strike missions. The F/A-18 Hornet replaced the F-4 Phantom II fighter and A-7 Corsair II light attack jet, and also replaced the A-6 Intruder as these aircraft were retired during the 1990s.

The combat-proven F/A-18 Hornet is the first tactical aircraft designed from its inception to carry out both air-to-air and air-to-ground missions. The F/A-18, (models A, B, C and D), can deliver conventional air-to-air, air-to-ground decoy expendables, and can carry airborne control pods for various missions. The combination of excellent thrust-to-weight ratio, and maneuverability an unmatched combat capability.

The A and C models have AN/APG-65 radars and the B and D models have AN/APG-73 radars. The AN/APG-65 and AN/APG-73 airborne radars provide excellent long-range, all-weather, lookup and lookdown capability over land or over sea. Communications for all four models include dual UHF/VHF radios, one KY-58 secure radio, and a two-way Link 4 capability. These F/A-18 aircraft also have Forward Looking Infrared (FLIR) capabilities for passive detection and ranging. Later model aircraft can actively and specifically interrogate other aircraft identification beacons.

The F/A-18 is in service with the U.S. Navy, U.S. Marine Corps and the air forces of Canada, Australia, Spain, Kuwait, Finland, Switzerland, and Malaysia. As of May 1999 Hornet pilots had accumulated more than 3.7 million flight hours and, in the process, are establishing new records daily in safety, reliability, maintainability and mission performance.

A key aspect of the Hornet's popularity with pilots is the ease with which the aircraft can be converted from fighter to strike mode and back again; it's as easy as flipping a switch. During Operation Desert Storm, F/A-18s routinely performed fighter and strike missions on the same sortie. Fulfilling a variety of roles-air superiority, fighter escort, suppression of enemy air defenses, reconnaissance, forward air control, close air support, and day and night strike missions-the F/A-18 has proven to be the most versatile combat aircraft in service.

The Hornet was designed to be reliable and easily maintainable. These factors result in significantly lower operating and maintenance costs for the F/A-18 compared to other U.S. Navy fighter and attack aircraft; and life cycle costs comparable to other modern multi-role aircraft. Survivability is another key feature of the Hornet. The F/A-18 uses a variety of systems and technologies to increase its likelihood of reaching a target undetected, of escaping unhurt if detected, and of returning its crew safely if it is hit.

The F/A-18 has a digital control-by-wire flight control system which provides excellent handling qualities, and allows pilots to learn to fly the airplane with relative ease. At the same time, this system provides exceptional maneuverability and allows the pilot to concentrate on operating the weapons system. A solid thrust-to-weight ratio and superior turn characteristics combined with energy sustainability, enable the F/A-18 to hold its own against any adversary. The power to maintain evasive action is what many pilots consider the Hornet's finest trait. In addition, the F/A-18 was also the Navy's first tactical jet aircraft to incorporate a digital, MUX bus architecture for the entire system's avionics suite. The benefit of this design feature is that the F/A-18 has been relatively easy to upgrade on a regular, affordable basis.

The F/A-18 has proven to be an ideal component of the carrier based tactical aviation equation over nearly two decades of operational experience. The only F/A-18 characteristic found to be marginally adequate by battle group commanders, outside experts, and even the men who fly the Hornet, is its range when flown on certain strike mission profiles. However, the inadequacy is managed well with organic and joint tanking assets.

During the initial hours of Desert Storm, 89 Navy and 72 Marine Corps F/A-18C's conducted both defense suppression and strike missions against Iraqi targets. the Navy Hornets flew 4,449 sorties and the Marine Corps' F/A-18C's flew 4,936 sorties resulting in a combined total of 4,551 strikes against targets during Operation Desert Storm. A total of 174 American Hornets (90 Navy; 84 Marines) participated in the war; 26 Canadian models, known as the CF-18, also participated in Desert Storm. Only three Hornets were lost during the war, one of them in a noncombat accident.

The F/A-18 has been upgraded regularly since entering service in 1983. In November 1989, the first F/A-18s equipped with night strike capability were delivered. Since 1991, F/A-18s have been delivered with F404-GE-402 enhanced performance engines that produce up to 20 percent more thrust than previous F404 engines. The Hornet's two engines deliver about 36,000 pounds combined thrust and a top speed of more than Mach 1.8.

Since May 1994, the Hornet has been equipped with upgraded radar - the APG-73 -, which substantially increases the speed and memory capacity of the radar's processors. In addition, today's Hornets have a laser target designator/ranger, housed within the targeting forward-looking infrared sensor that enables the aircraft to deliver precision laser-guided bombs with pinpoint accuracy.

" F-18 no doubt one the greatest fighter , seen lots of action with superior avionics from Boeing brings it to this spot but lacks vector thrust compared to Russian counterparts , and in one the dog fight display in US with Sukhoi , it was out gunned. "
4- Su-30 /35


The Sukhoi Su-30M is a multi-role two-seater fighter, broadly comparable to the American F-15E. The Su-30MK is the export version of the aircraft. The fighter is a development of the Su-27 (Flanker) family, designed by the Sukhoi Design Bureau of Moscow and is manufactured by the Irkut Corporation.

The aircraft is equipped with similar avionics and thrust vectoring as the Su-37, for superior combat agility and manoeuvrability. The aircraft is armed with precision anti-surface missiles and has a stand-off launch range of 120km.

The Indian Air Force ordered 40 aircraft in 1996 and an additional ten aircraft in 1998. 18 Su-30K have been delivered which will be upgraded to MKI standard, starting in 2006.

"The Sukhoi Su-30M is a multi-role two-seater fighter, broadly comparable to the American
F-15E."

First deliveries of ten Su-30MKI full specification aircraft with thrust vectoring and phased array radar took place in September 2002 and deliveries were completed in December 2004.

Hindustani Aeronautics (HAL) is also contracted to build 140 aircraft in India between 2003 and 2017, under a licensed production agreement. The first indigenously assembled aircraft was delivered in November 2004.

38 Su-30MKK and 24 navalised Su-30MK2 aircraft, which do not have thrust vectoring capability, are in service with the Chinese Air Force.

In 2003, Malaysia ordered 18 Su-30MKM aircraft. The first two were delivered in May 2007. Four more were delivered in 2007 and four in March 2008 Deliveries are scheduled to conclude by the end of 2008. Also in 2003, Indonesia ordered two Su-30MKK aircraft. A further three Su-30MK2 aircraft were ordered in August 2007.

In March 2006, Algeria placed an order for 28 Su-30MKA aircraft. The first was delivered in December 2007. In July 2006, Venezuela placed a contract for 24 Su-30MKI aircraft. The first eight were delivered in May 2007 and deliveries concluded in August 2008. An order for 12 additional aircraft is planned.

"Sukhoi`s new and most admired series of planes with western avionics , super cruise speed , AWACS missile system and vector thrust can make it one of the best 4 th generation fighter plane in the List ". 
3- F-35


The F-35 Lightning II joint strike fighter integrates advanced very low observable stealth into a supersonic, highly agile 5th generation fighter that provides the pilot with unprecedented situational awareness and unmatched lethality and survivability. With its host of next-generation technologies and unprecedented capabilities, the F-35 is the world’s most advanced multirole fighter.

*Performs as a first-day-of-the-war fighter
*Dominates all adversaries in the air or on the surface
*Has the ability to survive and prosecute the most formidable threats expected to emerge beyond 2020
*Conducts air-to-air and air-to-ground combat missions simultaneously
*Incorporates the most powerful and comprehensive sensor and mission avionics package ever to fly in a fighter

o F-35A conventional takeoff and landing (U.S. Air Force and the air forces of Italy, Netherlands, Turkey, Canada, Australia, Denmark, Norway)
o F-35B short takeoff/vertical landing (U.S. Marine Corps, U.K. Royal Air Force and Royal Navy, Italian Air Force and Navy)

" F-35 the Future plane of NATO , stealth , best avionics , vertical take off and 5 th generation fighter gives its 3rd Spot , what it lacks could be high cost of production thus cutting down the number of planes , single engine . "
2 -T-50


Development of Russia's LFI (logkiy frontovoi istrebitel) lightweight tactical fighter has been dramatically accelerated after the Russian Air Force decided its priorities for the next 10 years. Revealed here exclusively as the I-2000 (Istrebitel {fighter} 2000) project, the aircraft is due to become operational in 2005 as Russia's basic front-line fighter. It is also likely to become the leading export product of the Russian aircraft industry. Available information on the I-2000 indicates that it will be closely comparable to the US Joint Strike Fighter, operating in both the air-to-air and air-to-surface roles.

The aircraft comes from a long line of Mikoyan lightweight fighters, such as the MiG-15 and MiG-21. It is about the same size as the MiG-21 (shorter by 1.3m but wider by 4.5m), but noticeably smaller than its immediate predecessor, the MiG-29. Take-off weight is estimated at around 12 tonnes; maximum take-off weight at about 16 tonnes.

In early 2002 Sukhoi was chosen as prime contractor for the planned Russian fifth-generation fighter is called the PAK FA [ Perspektivnyi Aviatsionnyi Kompleks Frontovoi Aviatsyi - Future Air Complex for Tactical Air Forces]. This intermediate class twin-engined fighter will be larger than a MiG-29 and smaller than a Su-27.

The aircraft will feature a long combat radius, supersonic cruise speed, low radar cross section, super maneuverability, and the ability to make short takeoffs and landings. In accordance with the technical requirements, the PAK FA will have a normal takeoff weight of 20 tons, which is close to the average normal takeoff weight of the two American airplanes, the F-35 JSF (17.2 tons) and the F-22 (24 tons). The new fighter (a medium version) will have a traditional wing form, though the experience gathered as a result of Berkut's test flights will be taken in consideration when designing the fighter. It is supposed that it will be created using the Stealth technology, and equipped with two AL-41F engines by the Saturn scientific and industrial enterprise, a radar system with an active phased array (to all appearances, it will be produced by the Fazatron-NIIR corporation), and high-precision weapons.

The government commission decided on 26 April 2002 to choose the Sukhoi holding company as the head company to develop and produce the fighter of the fifth generation. The prototype of the PAK FA would take-off in 2006 and that in 2010 the aircraft would be ready for series production. The first deliveries, both for Russian armed forces and for export, would be possible in 2011-12.

The new airplane is being proposed to be brought from the concept design to a prototype series in less than 9 years. Historically, fourth and fifth generation fighters have not been created in less than 15 years. The Russian government has promised to allocate 1.5 billion dollars for the PAK FA through 2010. But the Russian Air Force is receiving less than 200 million dollars a year during this period, and will spend it primarily on other needs.

The prices and sources of funding will determine the destiny of the whole program. To date officials agree that the program will cost $1.5 billion. However, $1.5 billion is the sum needed for creating a new generation of avionics for the fighter (considering the fact that pre-production models of the phased array have already been produced, and will soon be tested). Completion of the AL-41F engine (present readiness is 30 percent) will require, in the opinion of the boss of Rosaviakosmos, 600 - 800 million dollars. Saturn said that launching of production of the AL-41F engine would take $150 million. An improved version of the AL-31F will be used on the aircraft originally (though it is not clear how these heavy motors are reconciled with the concept of a 20-ton fighter). The upgrade of these engines will require expenditures of 1.2-1.5 billion dollars. And finally, designers will have to spend several hundred millions of dollars on creating a new airframe.

According to some reports, India and Russia have agreed to jointly develop this fifth-generation fighter, under a scheduled with enter into service in 2009. This would be the first such joint development venture between the two countries.

" T-50 Russia`s first 5th generation plane , twin super cruise engine , best avionics system , Sukhoi background and out performance in simulation by USAF brings to this spot though still need to be tested but west have acknowledged it. JSF and T-50 will be future competitors and list could change according that. "
1 -F-22


The F-22A Raptor advanced tactical fighter entered service with the US Air Force in December 2005. The USAF requirement is for a fighter to replace the F-15, with emphasis on agility, stealth and range.

Developed at Aeronautical Systems Center, Wright-Patterson Air Force Base, Ohio, the F-22A Raptor is a supersonic, dual-engine fighter jet, which has won the 2006 Robert J Collier Trophy from the American National Aeronautic Association (NAA).

In April 2009, production of the F-22 fighter jet was officially terminated when Defense Secretary Robert Gates announced that the Pentagon would end the Lockheed-run F-22 programme and increase the production of the joint strike fighter. The availability of the cheaper and more-versatile F-35 fighter aircraft has resulted in production ceasing on the F-22 fighter jet.

F-22A development

By 1990 Lockheed Martin, teamed with Boeing and General Dynamics, had built and flown the demonstration prototype aircraft, designated YF-22. The first F-22 fighter aircraft was unveiled in April 1997 and was given the name Raptor.

"Carbon-fibre composites have been used for the F-22 fuselage frame."

In September 2002, the USAF decided to redesignate the aircraft F/A-22 to reflect its multi-mission capability in ground attack as well as air-to-air roles. The aircraft's designation was changed again to F-22A when it achieved initial operating capability (IOC) in December 2005.

The decision to proceed to low-rate initial production (LRIP) was authorised in August 2001 and Lockheed Martin delivered 49 aircraft under LRIP contracts.

Initial operational test and evaluation began in April 2004 and was successfully completed in February 2005.

A further 60 Raptors were ordered in July 2007, bringing the total ordered to 183, with production to 2011. In November 2008, $40m of funding for four additional raptors was approved by the Pentagon, increasing the total ordered jets to 187, with the buying scheduled in the second half of the fiscal year 2009. The USAF has a total requirement of 243 aircraft but funding was not made available for more than 187. By September 2009, approximately 145 aircraft had been delivered to the USAF. Holloman AFB is expected to deliver another 17 aircraft by the end of 2010.

The first operational wing of F-22A Raptors was Langley AFB in Virginia with a fleet of 40 aircraft. Elmendorff AFB, Alaska, became the second in August 2007 and Holloman AFB, New Mexico the third in June 2008. Operational Raptors will also be based at Hickam AFB Hawaii.

The F-22 achieved full operational capability in December 2007.

In February 2007, 12 F-22 aircraft began the first overseas deployment of the fighter at Kadena Air Base in Japan. The aircraft returned in May 2007. In January 2009, 12 F-22 jets were deployed at the Kadena Air Base from Langley Air Force Base in Japan for three months as a part of the 27th Fighter Squadron.

During flight tests, the F-22A has demonstrated the ability to 'supercruise', flying at sustained speeds of over Mach 1.5 without the use of afterburner.

Lockheed Martin has put forward proposals for a fighter-bomber version of the F-22, the FB-22, which will have larger delta wings, longer range and the ability to carry an external weapons payload of 4,500kg and total weapons .

" F-22 the only 5th generation fighter in service , stealth , best avionics , vector thrust makes it number 1 with no other competitors near it , but soon T-50 and F-35 will challenge its superiority ."

kings of sky


Rank 10 – F117 Stealth Fighter Year 1983

F117 Stealth Fighter
The F-117A Nighthawk Stealth Fighter, a single seat, twin engine aircraft developed by Lockheed Martin, was the first aircraft designed to exploit low-observable stealth technology. Development began in 1978 with a contract awarded to Lockheed’s Advanced Development Project know as the “Skunk Works,” in Burbank, Calif.
The first flight took place in 1981 but the aircraft remain a Military secret until 1988. The US Air Force had a total of 59 Nighthawks before retirement, starting in 2006 through to 2008, slowly removed the aircraft from the skies (read our previous post on the Retirement of The F-117 Nighthawk).
Also known as the Frisbee and the Wobblin’ Goblin, the Nighthawk, only used in night-time missions (hence the name), is unstable in flight but also highly maneuverable and almost invisible to radar.
The aircraft, powered by two low-bypass F404-GE-F1D2 turbofan engines from General Electric, is mainly constructed of aluminum, areas of the engine and exhaust systems consist of titanium.
The surfaces and edge profiles are optimized to reflect hostile radar into narrow beam signals, directed away from the enemy radar detector. All the doors and opening panels on the aircraft have saw-toothed forward and trailing edges to reflect radar.
Almost all the outer surface is coated with a Radar-Absorbent Material (RAM), even the rectangular air intakes on both sides of the fuselage are covered by gratings coated with RAM.
The aircraft does not rely on radar for navigation or targeting, instead the aircraft is equipped with Forward-Looking Infrared (FLIR) and a Downward-Looking Infrared (DLIR) with laser designator, supplied by Raytheon.
The fly-by-wire is supplied by BAE Systems Aircraft Controls. This system replaces manual control of the single seat aircraft, which is resumed by the pilot for weapon delivery.
The aircraft can carry a range of tactical fighter ordnance including; BLU-109B low-level laser-guided bomb, GBU-10 and GBU-27 laser-guided bomb units, Raytheon AGM-65 Maverick and Raytheon AGM-88 HARM air-to-surface missiles.
The F-117 Nighthawk has been in operational service in many missions including; Operation Just Cause, in Panama; during Operation Desert Storm, in Kosovo; in Afghanistan and during Operation Iraqi Freedom.
F-117′s are now being replaced in the USAF by the more effective F-22 Raptor and F-35 Lighting II.

Specifications

  • Engines 2 x General Electric F404-GE-F1D1 Turbofans
  • Range approx. 1,110 km
  • Weight 13,400 kg
  • Top speed approx. 1,040 km/h Dimensions
  • Length: 20.08 m, Height: 3.78 m, Wingspan: 13.20 m

Rank 9 – DR 1 Fokker Triplane Year 1917

DR 1 Fokker Triplane
The most famous airplane of World War One, Fokker Dr.1 Triplane was designed by Reinhold Platz and built by Fokker-Flugzeugwerke. The DR 1 took its first flight on 5th July 1917 and saw widespread service in the spring of 1918.
Many say the aircraft was inspired by Sopwith Triplane however others claim “Reinhold had not even seen the Sopwith before he began designing the DR 1.”
After testing a prototype known as V.3, which suffered from severe wing vibration, Reinhold redesigned the next prototype, the V.4, with hollow struts between the wings. The final design, which came to be known as the DR1, also had improvements to the ailerons and elevators.
The Fokker Dr 1 had one open cockpit, which could hold one pilot and the airframe was made out of steel tubing covered in aircraft doped canvas.
The Dr 1 came equipped with two machine guns which had an intercepting gear that was designed to fire bullets through the propeller arc without hitting the blades.
The DR 1 was a smaller, more maneuverable plane compared to others of World War One; but it was not as fast as most others at that time.
It was in this plane that the most celebrated World War One pilot, Manfred, von Richthofen “The Red Baron”was reported to have made the last of his 80 confirmed victories.
Only 320 Fokker Dr 1′s were made in World War One, so no Fokker Dr 1 is still around today, there are only replicas.

Specifications

  • Engine LeRhône type J
  • Range 298 km
  • Weight 405 kg
  • Top speed 185 km/h
  • Dimensions Length: 5.77 m, Height: 2.95 m, Wingspan, 7.19 m

Rank 8 – Mitsubishi Zero-Sen (A6M2) Year 1937

Mitsubishi Zero-Sen (A6M2)
The Mitsubishi A6M2 Zero-Sen, a single-seat monoplane fighter conceived as a replacement for the Mitsubishi A5M, was the most famous Japanese plane of World War Two.
Manufactured by Mitsubishi Jukogyo & Nakajima, It was the first shipboard fighter capable of surpassing land-based aircraft was famous for its ability to outmaneuver other aircraft such as the
Brewster F2A Buffaloes, Curtiss P-40s and Grumman F4F Wildcats.
Because of the A6Ms exceptional range and performance, it was used in almost every military engagement in the Pacific, until the end of the war.
The Zero- Sen was armed with two 20-mm type 99 cannon, two 7.7mm type 97 machine guns, and possessed the incredible range of 1930 miles using a centerline drop tank.
The unveiling of the A6M2 came as a complete surprise to US forces even though Claire Chennault, the author of ‘The Role of Defensive Pursuit,’ and leader of the Flying Tigers had warned the USAAF about the dangers of Japanese air power.
Once the effectiveness and maneuverability became clear, Chennault was said to have constantly reminded his pilots, ‘Never try to turn with a Zero. Always get above the enemy and try to hit him with the first pass.’
It was only when US Navy PBY Catalina retrieved an almost perfectly intact A6M2, shot down during Pearl Harbor, were the short comings of the aircraft discovered.
The main failing of the A6M2, 3, and 5 fighter aircraft were the lack of armor for the pilot and its fuel tanks were not self sealing and once breached the aircraft was lost.
The consequent testing and of this unmatchable aircraft lead the American aircraft manufacturer Grumman, to lighten the Grumman F4F Wildcat, and install a larger engine on the Grumman F6F Hellcat.
An up until the introduction of the P-38 Lightning, the F6F Hellcat, and the F4U Corsair the A6M Zero remained the premier fighter aircraft in the Pacific.

Specifications

  • Engine 1 Nakajima NK1C Sakae 12
  • Range 3,107 km
  • Weight 1,680 kg
  • Top speed 533.5 km/h
  • Dimensions Length: 9.06 m, Height: 3.05 m, Wingspan, 12 m

Rank 7 – Harrier Jump Jet (AV-8B Harrier II) Year 1985

Harrier Jump Jet (AV-8B Harrier II
British designed military jet aircraft capable of Vertical/Short Takeoff and Landing (V/STOL) via thrust vectoring.
The Harrier family is the only truly successful design of this type from the many that arose in the 1960s.
The Harrier family is made up of four main versions:
  • Hawker Siddeley Harrier – 1st generation Harrier, also known as the AV-8A Harrier.
  • British Aerospace Sea Harrier – Maritime strike/air defense fighter aircraft.
  • Boeing/BAE Systems AV-8B Harrier II – 2nd generation Harrier.
  • BAE Systems/Boeing Harrier II – British variant of the 2nd generation Harrier.
The Hawker Siddeley Harrier GR.1/GR.3 and the AV-8A were the first operational close-support and reconnaissance attack aircrafts with Vertical/Short Takeoff and Landing (V/STOL) capabilities.
These were developed directly from the Hawker P.1127 prototype which began after British aircraft manufacturer, Hawker Aircraft, came up with a design for a plane that could meet the current NATO specification for a “Light Tactical Support Fighter”.
The original P.1127 prototype made its first flight in 1960, the RAF ordered a modified version of the P.1127/Kestral in 1966, which became known as the Harrier GR.1.
The Harrier was extensively redeveloped by McDonnell Douglas and British Aerospace, leading to the AV-8B Harrier II and Harrier GR5/GR7/GR9,
The United States Marine Corps makes heavy use of its AV-8B and has developed into a number of sub-variants featuring upgraded systems, software, avionics and structural changes throughout.
While the Harrier is one of the most flexible aircraft ever made, the level of understanding and skill needed to pilot it is considerable.
Thanks to thrust vector and reaction control system, the Harrier is capable of forward flight as well as VTOL and STOL maneuvers; however this requires the skills and understanding associated with helicopters.
The four engine nozzle thrust vectors can be set between zero degrees (horizontal) and 98 degrees (down and slightly forwards), this allows the aircraft to take off and land vertically.
Despite the difficulties in piloting the aircraft, the AV-8B is a capable fighter armed with cannons and several varieties of air-to-air missiles. The AV-8B also doubles as great strike support, able to carry a large amount of stores on its six underwing hardpoints.
The Harrier AV-8B II is used currently by three nations; US, Spain and Italy. Briton’s RAF and Navy, also use its version of the Harrier II.

Specifications

  • Engine 1 Rolls-Royce F402-RR-408
  • Range 1,000 km
  • Weight 10,410 kg
  • Top speed 1,000 km/h
  • Dimensions Length: 14.11 m, Height: 3.6 m, Wingspan, 9.24 m

Rank 6 – F 86 Sabre Year 1949

 F 86 Sabre Year 1949
The F86 was the final production model of a North American Aviation design for a swept-wing day fighter which could also double as a dive-bomber or escort fighter. The F-86 was built in large numbers by the US and saw extensive action in the Korean War, where it was pitted against the slightly superior MiG-15.
The F-86 started out life as when two prototype XP-86s were contracted in late 1944, but large scale production did not begin until after WWII.
The first XP-86 prototype flew on 1 October 1947, powered by a 3,750-pound thrust G.E. J35 engine. It was re-engined with a more powerful G.E. J47 turbojet the following spring and was re-designated the YP-86A. With a more powerful engine top speed and ceiling of the new fighter increased significantly and the rate of climb almost doubled.
The F-86A was fitted with a T-4E-1 ejection seat, with a manually jettisoned canopy, plus a self-destruct charge to keep it from falling into enemy hands. The F-86A also had a stores pylon under each wing that could each carry a 782 liter (206.5 US gallons) drop tank or a 450 kilogram (1,000 pound) bomb.
Four zero-length stub rocket launchers could be installed under each wing, with each launcher carrying two 12.7 centimeters (5 inches) “High Velocity Air Rockets (HVARs)” for a total of 16 rockets.
Unfortunately, without the drop tanks, the combat radius fell from about 530 kilometers (330 miles) to 80 kilometers (50 miles). In effect, the only armament of the F-86A was its machine guns, and so in the beginning it was not very useful for close support.
The first production model was initially designated the P-86A, but became the legendary F-86A in June 1948. When the new fighter entered US Air Force service in 1949 it gained the name, the “Sabre”.
Its success led to an extended production run of over 7,800 aircraft between 1946 and 1956, in the
United States, Japan and Italy. The upgraded Canadair Sabre added another 1,815 airframes, while the CAC CA-27 Avon Sabre saw a production run of 112. It was by far the most-produced Western jet fighter, with total production of all variants at 9,860 units.

Specifications

  • Engine General Electric J47-GE-17B
  • Range 870 km
  • Weight 9,136 kg
  • Top speed 1,107 km/h
  • Dimensions Length: 12.27 m, Height: 4.57 m, Wingspan, 11.92 m

Rank 5 – Messerschmidt ME109 Year 1937

Messerschmidt ME109
Messerschmidt ME109 was the official Reichsluftfahrtministerium (German Aviation Ministry, RLM) designation, the design was submitted by the Bayerische Flugzeugwerke company, and was used exclusively in all official German documents dealing with this aircraft family.
The company was renamed Messerschmitt AG in July 1938 when Erhard Milch finally allowed Willy Messerschmitt to acquire the company; from then on, all Messerschmitt aircraft were to carry the “Me” designation except those already assigned a Bf prefix.
Perhaps not the best performer of the war, even its pilots would admit that it was not the safest or most comfortable plane to fly. But its combat record, from beginning to end, was monumental, and it was the weapon of choice for the greatest fighter pilots in history.
A total of 33,984 units were produced up to April 1945. Accounting for 47% of all German aircraft production, as well as 57% of all German fighter types produced.
The ME 109 became the backbone of the Luftwaffe fighter force in World War II, although it began to be partially replaced by the Focke-Wulf Fw 190 from 1941.
The ME/Bf 109 was the most successful fighter of World War II, shooting down more aircraft than any of its contemporaries. It was flown by the three top-scoring fighter aces of World War II: Erich Hartmann, the top scoring fighter pilot of all time with 352 victories, Gerhard Barkhorn with 301 victories, and Günther Rall with 275 victories. All of them flew with Jagdgeschwader 52, a unit which exclusively flew the Bf 109 and was credited with over 10,000 victories.
Originally conceived as an interceptor, it was later developed to fulfill multiple tasks, serving as bomber escort, fighter bomber, day-, night- all-weather fighter, bomber destroyer, ground-attack aircraft, and as reconnaissance aircraft.
The ME 109, including such features as an all-metal monocoque construction, a closed canopy, and retractable landing gear, was one of the first true modern fighters of the era.
Although the Bf 109 had weaknesses, including short range and challenging take off and landing characteristics, it stayed competitive with Allied fighter aircraft until the end of the war.

Specifications

  • Engine Daimler-Benz DB 605A
  • Range 550 km
  • Weight 2,600 kg
  • Top speed 635 km/h
  • Dimensions Length: 8.94 m, Height: 2.59 m, Wingspan, 9.92 m

Rank 4 – F 18 Super Hornet Year 1983

F 18 Super Hornet
The Boeing F/A-18E/F Super Hornet is a supersonic carrier-capable fighter/attack aircraft. It is a larger and more advanced derivative of the F/A-18C/D Hornet.
The Super Hornet was first ordered by the U.S. Navy in 1992. The Super Hornet first flew on November 29, 1995 and initial production on the F/A-18E/F began in 1995. Flight testing started in 1996 with the F/A-18E/F’s first carrier landing in 1997. It later entered service with the United States Navy in 1999, replacing the F-14 Tomcat.
Sharing some similarities as previous Hornet variants, the Navy retained the F/A-18 designation to help sell the program to Congress as a low-risk “derivative”; however the Super Hornet is largely a new aircraft.
Design features that were kept included the avionics, ejection seats, radar, armament, mission computer software, and maintenance/operating procedures.
The F/A-18E/F aircraft are 4.2 feet longer than earlier Hornets, have a 25% larger wing area, and carry 33% more internal fuel which will effectively increase mission range by 41% and endurance by 50%.
The Super Hornet also incorporates two additional weapon stations. This allows for increased payload flexibility by mixing and matching air-to-air and/or air-to-ground ordnance. The aircraft can also carry the complete complement of “smart” weapons, including the newest joint weapons such as JDAM and JSOW.
The Super Hornet can carry approximately 17,750 pounds (8,032 kg) of external load on eleven stations. It has an all-weather air-to-air radar and a control system for accurate delivery of conventional or guided weapons.
There are two wing tip stations, four inboard wing stations for fuel tanks or air-to-ground weapons, two nacelle fuselage stations for Sparrows or sensor pods, and one centerline station for fuel or air-to-ground weapons. An internal 20 mm M61A1 Vulcan cannon is mounted in the nose.
Survivability is an important feature of the Super Hornet design. The US Navy took a “balanced approach” to survivability in its design. This means that it does not rely on low-observable technology, such as stealth systems, to the exclusion of other survivability factors. Instead, its design incorporates a combination of stealth, advanced electronic-warfare capabilities, reduced ballistic vulnerability, the use of standoff weapons, and innovative tactics that cumulatively and collectively enhance the safety of the fighter and crew.
The Super Hornet, unlike the previous Hornet, can be equipped with an aerial refueling system (ARS) or “buddy store” for the refueling of other aircraft.
In 2003, the Navy identified a flaw in the Super Hornet’s under wing pylons, which could reduce the aircraft’s service life unless repaired. The problem has been corrected on new airplanes and existing airplanes will be repaired starting in 2009.
The versatility of the F-18 Super Hornet has led the aircraft to be used in such missions including; day/night strikes with precision-guided weapons, anti-air warfare, fighter escort, close air support, suppression of enemy air defense, maritime strikes, reconnaissance, forward air control (Airborne) (FAC(A)), air-to-air refueling as well as leaflet drops with payload delivery unit 5 (PDU-5) containers.

Specifications

  • Engines 2 F414-GE-400 turbofans
  • Range 2,453 km
  • Weight 29,932 kg (max.)
  • Top speed 2,145 km/h
  • Dimensions Length: 18.5 m, Height: 4.87 m, Wingspan, 13.68 m

Rank 3 – MIG 21 (F-13 / Fishbed C) Year 1959

MIG 21 (F-13 / Fishbed C)
The Mikoyan-Gurevich MiG-21 (“Fishbed”) is a supersonic jet fighter aircraft, designed and built by the Mikoyan-Gurevich Design Bureau in the Soviet Union.
The MiG-21F, a continuation of Soviet jet fighters MiG-15, 17 and 19, is a short-range day fighter-interceptor and the first major production version of the popular MiG-21 series. It is one of around 15 versions of this aircraft that have served in the air arms of many nations around the world.
The E-5 prototype of the MiG-21 was first flown in 1955 and made its first public appearance during the Soviet Aviation Day display at Moscow’s Tushino Airport in June 1956.
When the MiG-21 was first introduced, it exhibited several flaws. Its early version air-to-air missiles, the Vympel K-13 (AA-2 ‘Atoll’), were not successful in combat, and its gyro gunsight was easily thrown off in high-speed maneuvers. Once these problems had been revised, the MiG-21 became a formidable fighter aircraft.
Employing a delta configuration, the MiG-21 was the first successful Soviet aircraft combining fighter and interceptor characteristics in a single aircraft. It was a lightweight fighter, achieving Mach 2 with a relatively low-powered afterburning turbojet.
The fighter holds a number of aviation records, including the most produced supersonic jet aircraft in aviation history, the most produced combat aircraft since World War II, and the longest production run of a combat aircraft.
Its Mach 2 capability exceeds the top speed of many later modern fighter types. It has been estimated that more than 10,000 MiG-21s were built. More than 50 countries of the world have flown the MiG-21.

Specifications

  • Engine 1 Tumanski R-11F-300 jet
  • Range 1,640 km
  • Weight 4,600 kg
  • Top speed 2,093 km/h
  • Dimensions Length: 15.77 m, Height: 7.16 m, Wingspan, 4.80 m

Rank 2 – Supermarine Spitfire Year 1938

Supermarine Spitfire
The Supermarine Spitfire was a British single-seat fighter aircraft, used by the Royal Air Force and many other Allied countries during the Second World War, and into the 1950s. The extremely adaptable deign of the Spitfire led to 24 marks of aircraft and many sub-variants within the marks.
The Spitfire was originally designed by R. J. Mitchell, chief designer at the Supermarine Aviation Works, a subsidiary of Vickers-Armstrongs. He continued to refine the design until his death from cancer in 1937, whereupon his colleague Joseph Smith became chief designer.
R. J. Mitchell’s 1931 design to meet Air Ministry specification F7/30 for a new and modern fighter capable of 250 mph, the Supermarine Type 224, resulted in an open-cockpit monoplane with bulky gull-wings and a large fixed, spatted undercarriage powered by the 600 horsepower evaporative-cooled Rolls-Royce Goshawk engine.
Based on Reginald Mitchell’s aesthetically pleasing F.7/30 design, the Spitfire was a complex design for its day, with a light alloy monocoque fuselage and a single spar wing, with stressed-skin covering and fabric-covered control surfaces.
The first prototypes employed a DeHavilland two-blade wooden fixed-pitch propeller. After initial testing, this was replaced by a DeHavilland three-blade, two position propeller, and later in 1940, a DeHavilland three-blade constant-speed propeller was substituted.
Production Spitfires had a fixed tail wheel, and triple ejector exhaust manifolds. The PV.12 engine which became the X80 HP Rolls-Royce Merlin II and later the Merlin III engine were installed.
Standard armament in what was known as the “A wing” was eight 0.303-in. Browning machine-guns with 300 rounds of ammunition. The speed of the Spitfire I was marginally higher than that of its principal opponent the Luftwaffe’s Messerschmitt Bf 109E, and it was infinitely more maneuverable than the German fighter, although the Bf 109E could out climb and out dive the British fighter, and its shell-firing cannon had a longer range than the Spitfire’s machine-guns.
In an effort to develop the Spitfire further, two principal modifications were made, these included the introduction of a pressurized cabin and the use of an engine suitably rated for higher altitude. These changes were incorporated in the Spitfire Mark IV.
Deliveries of production Spitfire I’s began in June 1938; just over two years after ‘Mutt’ summers flew the prototype at Southampton on the 5th of March, 1936.
In the two years preceding production, Supermarine laid out their Wollaston factory for large-scale production, and organized one of the largest subcontract schemes ever envisioned in Britain.
Its elliptical wing had a thin cross-section, allowing a higher top speed than the Hawker Hurricane and many other contemporary designs.
Much loved by its pilots, the Spitfire saw service throughout the whole of the Second World War, continuing to serve as a front line fighter for several air forces well into the 1950s.
The Spitfire will always be compared to its main adversary, the Messerschmitt Bf 109: both were among the finest fighters of their day and followed similar design philosophies of marrying a small, streamlined airframe to a powerful liquid-cooled inline engine.

Specifications

  • Engine 1 Rolls Royce Merlin 45
  • Range 580 km
  • Weight 3,300 kg
  • Top speed 520 km/h
  • Dimensions Length: 10.77 m, Height: 3.90 m, Wingspan, 11.23 m

Rank 1 – P51 Mustang Year 1941

P51 Mustang
The North American Aviation P-51 Mustang was a long-range single-seat fighter aircraft that entered service with Allied air forces in the middle years of World War II serving as a bomber escort in raids over Germany.
The Mustang was a fast, well-made, and highly durable aircraft; it was also very economical to produce.
The P-51s first flight took place 26th October 1940. It was powered by the Packard V-1650-7, a two-stage two-speed supercharged 12-cylinder Packard-built version of the legendary Rolls-Royce Merlin engine, and was armed with six .50 caliber (12.7 mm) Browning M2/AN machine guns, a version of the Browning adapted for use in combat aircraft.
The first production contract was awarded by the British for 320 NA-73 fighters, named Mustang I by the British and designated the XP-51 by the US Air Force.
The Mustang I made its debut in combat on 10 May 1942 for the British RAF. With its long range and excellent low-level performance, it was employed for tactical reconnaissance and ground-attack duties over the English Channel.
The original aircraft had limitations when flying over 15,000 ft and did not become a valued fighter until modifications were made.
To enhance altitude capabilities, the British tested the Rolls-Royce Merlin engine in the P-51 airframe.
Four airframes were adapted in England to take the Merlin engine. These four planes known as Mustang Xs had deep intakes below the engine for carburetor air. The results of the British tests were passed on to North American.
At the same time on the other side of the Atlantic, North American had undertaken a similar conversion project and was building two Packard Merlin-powered Mustangs.
These improvements increase speed by 51 mph. The newly fitted Packard-built Merlin V-1650-7 was capable of delivering 1,695 hp which provided a speed of 437 mph at 25,000 feet.
The airframes were strengthened to accommodate the extra power, the ventral radiator was deepened, and the carburetor intake was moved from above the nose to below, to accommodate the Merlin updraft induction system.
The P-51 became one of the aviation world’s elite. The total number of 14,819 Mustangs of all types were built for the Army. American Mustangs destroyed 4,950 enemy aircraft in Europe to make them the highest scoring US fighter in the theater.
They were used as dive-bombers, bomber escorts, ground-attackers, interceptors, for photo-recon missions, trainers, transports (with a jump-seat), and after the war, high performance racers.

Specifications

  • Engine 1 Rolls-Royce/Packard Merlin V-1650-7
  • Range 2,000 km
  • Weight 3,450 kg
  • Top speed 703 km/h
  • Dimensions Length: 9.82 m, Height: 4.16 m, Wingspan, 11.28 m